• Fasting - Part 1. The science behind it

    "Our food should be our medicine.  Our medicine should be our food.  But to eat when you are sick is to feed your sickness."
                                                   - Hippocrates

        Fasting is one of the most ancient and widespread healing traditions in human history. This solution has been practiced by virtually every culture and religion on earth. Hippocrates of Cos (c460 – c370 BC) is widely considered the father of modern medicine. Among the treatments that he prescribed and championed was the practice of fasting. The ancient Greek writer and historian Plutarch (c46 AD– c120 AD) also echoed these sentiments. He famously wrote, “Instead of using medicine, better fast today”. Ancient Greek thinkers Plato and his student Aristotle were also strong supporters of fasting.
        The ancient Greeks believed that medical treatment could be observed from nature. Humans, like most animals, do not eat when they become sick. For this reason, fasting has been called the ‘physician within’. This fasting ‘instinct’ that makes dogs, cats and humans anorexic when sick. This sensation is certainly familiar to everybody. Consider the last time you were sick with the flu. Probably the last thing you wanted to do was eat. So, fasting seems to be a universal human instinct to multiple forms of illnesses. Thus fasting is ingrained into human heritage, and as old as mankind itself. The ancient Greeks also believed that fasting improves cognitive abilities. Think about the last time you ate a huge meal. Did you feel more energetic and mentally alert afterwards? Or, instead did you feel sleepy and a little dopey? More likely the latter. Blood is shunted to your digestive system to cope with the huge influx of food, leaving less blood going to the brain. Result – food coma.
        Fasting is also widely practiced for spiritual purposes and remains part of virtually every major religion in the world. In spiritual terms, it is often called cleansing or purification, but practically, it amounts to the same thing. The practice of fasting developed independently among different religions and cultures, not as something that was harmful, but something that was deeply, intrinsically beneficial to the human body and spirit.

        So fasting is truly an idea that has withstood the test of time.  But what is exactly fasting and what does science say about it?

    Fasting involves controlled, voluntary abstinence from caloric intake to achieve a physical, mental, or spiritual outcome.

         Our ancestors would regularly go days or even weeks without food. As a result, humans have evolved specific adaptations to survive, and even thrive, during periods of famine. So, in reality, the body  only exists in one of two states – the fed (high insulin) state or the fasted (low insulin) state. Either we are storing food energy (increasing stores) or we are burning stored energy (decreasing stores). It is one or the other, but not both. More analytically :

    Feeding – During meals, insulin levels are raised. This allows uptake of glucose into tissues such as the muscle or brain to be used directly for energy. Excess glucose is stored as glycogen in the liver.
    The post-absorptive phase – 6-24 hours after last meal .   Insulin levels start to fall. Breakdown of glycogen releases glucose for energy. Glycogen stores last for roughly 24 hours.
    Gluconeogenesis – 24 hours to 2 days – The liver manufactures new glucose from lactate and amino acids in a process called “gluconeogenesis”. Literally, this is translated as “making new glucose”. In non-diabetic persons, glucose levels fall but stay within the normal range.
    Ketosis – 2-3 days after beginning fasting – This is when interesting things start to happen for the body. The low levels of insulin reached during fasting, stimulate lipolysis, the breakdown of fat for energy. The storage form of fat, known as triglycerides, is broken into the glycerol backbone and three fatty acid chains. Glycerol is used also for gluconeogenesis. Fatty acids may be used for directly for energy by many tissues in the body, but not the brain. Ketone bodies instead , which are produced from fatty acids during ketosis , are capable of crossing the blood-brain barrier for use by the brain. After four days of fasting, approximately 75% of the energy used by the brain is provided by ketones. The two major types of ketones produced are beta hydroxybutyrate and acetoacetate, which can increase over 70 fold during fasting.
    Protein conservation phase – >5 days – High levels of growth hormone maintain muscle mass and lean tissues. The energy for maintenance of basal metabolism is almost entirely met by the use of free fatty acids and ketones. Increased norepinephrine (adrenalin) levels prevent the decrease in metabolic rate.

       We see that the human body has well developed mechanisms for dealing with periods of low food availability. In essence, what is happening while fasting is a process of switching from burning glucose to burning fat . Fat is simply the body’s stored food energy. In times of low food availability, stored food is naturally released to fill the void. So no, the body does not ‘burn muscle’ in an effort to feed itself, at least until all the fat stores are used.


    Lets have a look on the effects of fasting on Hormonal Adaptation


    • Insulin


        Insulin and insulin resistance are major drivers of obesity. Fasting on the other hand , is the most efficient and consistent strategy to decrease insulin levels. This was first noted decades ago, and widely demonstrated scientifically afterwards. It is quite simple and obvious. All foods raise insulin, so the most effective method of reducing insulin is to avoid all foods. Blood glucose levels remain normal, as the body begins to switch over to burning fat for energy. This effect can be observed in fasting periods as short as 24-36 hours. Longer duration fasts reduce insulin even more dramatically. More recently, alternate daily fasting has been studied as an acceptable technique of reducing insulin.
        Regular fasting, in addition to lowering insulin levels, has also been shown to improve insulin sensitivity significantly. Many argue that this is the missing link in the weight loss puzzle. Most diets reduce highly insulin-secreting foods, but do not address the insulin resistance issue which is crucial in diabetics.  Weight is initially lost, but insulin resistance keeps insulin levels and body weight high. Fasting is an efficient method of reducing insulin resistance.
        Lowering insulin also rids the body of excess salt and water. Insulin causes salt and water retention in the kidney. Very low-carb diets often cause diuresis, the loss of excess water, leading to the contention that much of the initial weight loss is water. While true, diuresis is beneficial in reducing bloating, and feeling ‘lighter’. Some may also note a slightly lower blood pressure. Fasting has also been noted to have an early period of rapid weight loss. For the first five days, weight loss averages 0.9 kg/ day, far exceeding the caloric restriction and likely due to a diuresis of salt and water.


    • Growth Hormone


       Growth hormone is known to increase the availability and utility of fats for fuel. It also helps to preserve muscle mass and bone density. Secretion is known to be pulsatile, making accurate measurement difficult. Growth hormone secretion decreases steadily with age. One of the most potent stimuli to growth hormone secretion is fasting. Over a five-day fasting period growth hormone secretion is more than doubled. The net physiologic effect is to maintain muscle and bone tissue mass over the fasting period.


    • Adrenalin


         Adrenalin levels are increased so that we have plenty of energy to go get more food. For example, 48 hours of fasting produces a 3.6% increase in metabolic rate, not the dreaded metabolic ‘shut-down’. In response to a 4 day fast, resting energy expenditure increased up to 14%.   Rather than slowing the metabolism, instead the body revives it up. Additionally, studies show that the adrenalin-induced fat-burning does not depend upon lowering blood sugar. Presumably, this is done so that we have energy to go out and find more food.

    And what about vitamins ,minerals and electrolytes?

        Concerns about malnutrition during fasting are misplaced. Insufficient calories are not a major worry, if the fat stores are quite ample. The main concern is the development of micronutrient deficiency. However, if the fasting regime is accompanied by the use of a multi-vitamin and mineral supplementation that will provide the recommended daily allowance of micronutrients , there should’t be any issue.  It is worth noting, that in 1973 a therapeutic fast of 382 days that resulted in loss of 125 kilos for a patient, was maintained with only a multivitamin potion and had no harmful effect on health . Actually, this man maintained that he had felt terrific during this entire period. The only concern may be a slight elevation in uric acid that has been described in fasting and can be solved by increased water consumption.

    Additionally, evidence suggests four brain health effects linked to fasting:

    • Brain cell re-generation


    • Cognitive and psychological benefits


    • Resilience to neurological conditions


    • Slowing the effects of aging.


    This research on brain health is focused on the use of ketones, molecules that as we saw before, are being produced and used by the body as a source of fuel while fasting. Administration of ketones is a well established therapy since decades for intractable epilepsy and seizures. It should be considered early in the treatment of Dravet syndrome and myoclonic-astatic epilepsy (Doose syndrome). A growing body of literature suggests also that the use of ketones may be beneficial in certain neurodegenerative diseases, including Alzheimer disease, Parkinson’s disease, and amyotrophic lateral sclerosis. In these disorders, ketones appears to be neuroprotective, promoting enhanced mitochondrial function and rescuing adenosine triphosphate production. Ultimately , dietary therapy is a promising intervention for cancer, given that it may target the relative inefficiency of tumors in using ketone bodies as an alternative fuel source.

    So, let’s summarise.

        Fasting, but not low calorie diets, results in numerous physiological and hormonal adaptations that all appear to be highly beneficial on many levels. The main benefits of fasting are metabolic flexibility and weight management. In essence, fasting transitions the body from burning sugar to burning fat.  Resting metabolism is NOT decreased but instead increased.  We are, effectively, feeding our bodies through our own fat.  We are ‘eating’ our own fat.  This makes total sense since fat is, in essence, stored food. Fat is food stored away for the long term, like money in the bank.  Short term food is stored as glycogen, like money in the wallet.  The problem we have, is how to access the money in the bank.  As our wallet depletes, we become nervous and go out working to fill it again.  This prevents us from getting access to our stored money in the bank. In the same manner, as our glycogen ‘wallet’ depletes, we get hungry and want to eat.  That makes us look for food, despite the fact that there is more than enough food stored as fat in the body ‘bank’’.  How do we get to that fat to burn it? Fasting provides an easy way in.



    Anderson JW, Herman RH, Newcomer KL. Improvement in glucose tolerance of fasting obese patients given oral potassium. Am J Clin Nutr. 1969 Dec;22(12):1589–1596.

    Drenick EJ, Hunt IF, Swendseid ME. Magnesium depletion during prolonged fasting of obese males. J Clin Endocrinol Metab. 1969 Oct;29(10):1341–1348.

    Jackson IM, McKiddie MT, Buchanan KD. The effect of prolonged fasting on carbohydrate metabolism: evidence for heterogeneity in obesity. J Endocrinol. 1968 Feb;40(2):259–260.

    Jackson IM, McKiddie MT, Buchanan KD. Effect of fasting on glucose and insulin metabolism of obese patients. Lancet. 1969 Feb 8;1(7589):285–287.

    Thomson TJ, Runcie J, Miller V. Treatment of obesity by total fasting for up to 249 days. Lancet. 1966 Nov 5;2(7471):992–996.

    Stewart, W. K., & Fleming, L. W. (1973). Features of a successful therapeutic fast of 382 days' duration. Postgraduate medical journal, 49(569), 203–209. https://doi.org/10.1136/pgmj.49.569.203

    de Groot, S., Pijl, H., van der Hoeven, J., & Kroep, J. R. (2019). Effects of short-term fasting on cancer treatment. Journal of experimental & clinical cancer research : CR, 38(1), 209. https://doi.org/10.1186/s13046-019-1189-9

    Grajower, M. M., & Horne, B. D. (2019). Clinical Management of Intermittent Fasting in Patients with Diabetes Mellitus. Nutrients, 11(4), 873. https://doi.org/10.3390/nu11040873

    Furmli, S., Elmasry, R., Ramos, M., & Fung, J. (2018). Therapeutic use of intermittent fasting for people with type 2 diabetes as an alternative to insulin. BMJ case reports, 2018, bcr2017221854. https://doi.org/10.1136/bcr-2017-221854

    Wilhelmi de Toledo F, Grundler F, Bergouignan A, Drinda S, Michalsen A (2019) Safety, health improvement and well-being during a 4 to 21-day fasting period in an observational study including 1422 subjects. PLoS ONE 14(1): e0209353. https://doi.org/10.1371/journal.pone.0209353

    Klein S, Holland OB, Wolfe RR. Importance of blood glucose concentration in regulating lipolysis during fasting in humans. Am J Physiol. 1990 Jan;258(1 Pt 1):E32-9. doi: 10.1152/ajpendo.1990.258.1.E32. PMID: 2405701.
    Ho KY, Veldhuis JD, Johnson ML, et al. Fasting enhances growth hormone secretion and amplifies the complex rhythms of growth hormone secretion in man. J Clin Invest. 1988 Apr;81(4):968-75.

    Zauner C, Schneeweiss B, Kranz A, et al. Resting energy expenditure in short-term starvation is increased as a result of an increase in serum norepinephrine. Am J Clin Nutr. 2000 Jun;71(6):1511-5.

    Sumithran P, Prendergast LA, Delbridge E, et al. Long-term persistence of hormonal adaptations to weight loss. N Engl J Med. 2011 Oct 27;365(17):1597-604. doi: 10.1056/NEJMoa1105816.
    Bailey EE, Pfeifer HH, Thiele EA. The use of diet in the treatment of epilepsy. Epilepsy Behav. 2005;6:4–8.

    Huttenlocher PR. Ketonemia and seizures: metabolic and anticonvulsant effects of two ketogenic diets in childhood epilepsy. Pediatr Res. 1976;10:536–540.

    Otto C, Kaemmerer U, Illert B, et al. Growth of human gastric cancer cells in nude mice is delayed by a ketogenic diet supplemented with omega-3 fatty acids and medium-chain triglycerides. BMC Cancer. 2008;8:122.
    Nebeling LC, Miraldi F, Shurin SB, Lerner E. Effects of a ketogenic diet on tumor metabolism and nutritional status in pediatric oncology patients: two case reports. J Am Coll Nutr. 1995;14:202–208.

    Maswood N, Young J, Tilmont E, et al. Caloric restriction increases neurotrophic factor levels and attenuates neurochemical and behavioral deficits in a primate model of Parkinson’s disease. Proc Natl Acad Sci U S A. 2004;101:18171–18176.

    Kim DY, Davis LM, Sullivan PG, et al. Ketone bodies are protective against oxidative stress in neocortical neurons. J Neurochem. 2007;101:1316–1326.

    Bough KJ, Wetherington J, Hassel B, et al. Mitochondrial biogenesis in the anticonvulsant mechanism of the ketogenic diet. Ann Neurol. 2006;60:223–235. An elegant study correlating seizure protection with changes in gene expression, biochemistry, and electrophysiology.

    Murphy P, Likhodii S, Nylen K, Burnham WM. The anti-depressant properties of the ketogenic diet. Biol Psychiatry. 2004;56:981–983.

  • The Psychology of Eating , part 3

    Part 3. How the food we eat affects our mood and mental state.

        Our full physical and mental development is dependent on the food that we eat. Without sufficient food we would not grow, our bodies would be stunted and our physical organs would be undeveloped; moreover the development of our brain would be irrevocably harmed. But we also need high quality nutrition so that the body can repair itself fast , wounds can heal properly and cells can repair themselves as necessary. What we eat affects how our immune system works, how our genes work, and how our body responds to stress. All cells and tissues on our body , enzymes, neurotransmitters , hormones etc are made from the chemical components of the foods (and drinks) that we consume. So, we are literally what we eat.

        Additionally , the food we consume affects the microbiome of our gut. There is a plethora of studies showing how a healthier microbiome is going to decrease inflammation in the body, which consequently affects mood and  cognition. But this is just the tip of the iceberg. Known as the enteric nervous system (ENS), the gut’s brain is housed under the mucosal lining and between the muscular layers of the esophagus, the stomach, and the small and large intestines. The enteric nervous system is a rich and complicated network of neurons and neurochemicals that sense and control events in the digestive tract and, remarkably, can sense and respond to events in other parts of the body, including the brain. Amazingly, when scientists finally counted the number of nerve cells in the gut-brain, they found it contained over one hundred million neurons—more than the number of nerve cells in the spinal cord. What’s fascinating to note is that researchers have observed a significantly greater flow of neural traffic from the ENS to the head-brain than from the head-brain to the ENS. In other words, rather than the head informing the digestive system what to eat and how to metabolize, the focus of command is stationed in the belly. In addition to an extensive network of neurons, the entire digestive tract is also lined with cells that produce and receive a variety of neuropeptides and neurochemicals; the same substances, in fact, that were previously thought to be found only in the brain. These include serotonin, dopamine, norepinephrine, and glutamate. Even more eye-opening is that many hormones and chemicals previously thought to exist only in the gut were later found to be active in the brain. These include insulin, cholecystokinin, vasoactive intestinal protein, motilin, gastrin, somatostatin, thyrotropin releasing hormone, neurotensin, secretin, glucagon, and bombesin. All these foundings confirm the strong connection of the gut with the brain.

        Another compelling discovery is that the entire digestive tract is lined with specialised cells that produce and receive endorphins and enkephalins, chemicals that yield an array of sensations including joy, satisfaction, and pain relief. Most of the digestive sensations we are aware of tend to be negative ones, such as digestive upset and discomfort. Yet the warm gut feelings we sometimes experience after a satisfying meal or an exciting encounter are, in part, the enteric nervous system squirting pleasure chemicals at distant and neighbouring cells. As many of us know, the gut is often a barometer of our emotional states and stresses. Those who suffer from peptic ulcer, irritable bowel syndrome, heartburn, upset stomach, and other conditions would certainly concur. Perhaps this is why the gut produces an abundance of a class of chemicals known as the benzodiazepines. These psychoactive substances are the active ingredients in the prescription drugs Valium and Xanax. That’s right, your gut naturally produces these substances, in their exact chemical form, without a prescription and at no extra cost.

        But let’s have a look on the most common issues of mood and mental disorder. Anxiety for example is strongly related to a state of disturbance in the gut bacteria. When people experience unrelenting anxiety, then this means that they may be experiencing what is described by some theorists as an anxiety disorder. This includes panic disorder, obsessive-compulsive disorder, and social phobia and generalised anxiety disorder. Dr. Perlmutter considers that anxiety disorders are caused by a combination of factors which include the condition and processing ability of the gut, and the bacteria which inhabits it. He states: “When the balance of gut bacteria isn’t right, other biological pathways – be they hormonal, immunological or neuronal, aren’t right either. And the brain’s processing centres, such as those that handle emotions, aren’t right either. He quotes two significant experiments to substantiate his argument: In a 2011 study published in the Proceedings of the National Academy of Sciences, mice fed probiotics had significantly lower levels of the stress hormone corticosterone, than mice fed plain broth. (J.A. Bravo et al., 2011). The second study he describes was conducted at Oxford University. Neurobiologists found that giving people prebiotics (which is food for the promotion of good bacteria in the gut), resulted in positive psychological effects. What was observed by the Oxford researchers was that, compared to the placebo group, the individuals who had taken the prebiotics paid more attention to positive information, and less attention to the negative information. This effect, which has been noticed with individuals on antidepressants or anti-anxiety medication, indicated that the prebiotic group experienced less anxiety when faced with the negative stimuli. Also, the researchers discovered that the people who took the prebiotics had lower levels of cortisol, when measured via their saliva samples, which were taken in the morning, when cortisol levels are at their highest. Dr Perlmutter considers that these examples are relevant to the growing evidence of research studies that show a connection between mental health and gut bacteria, in particular in relation to anxiety.

        Another important factor in the management of anxiety involves regulating our blood sugar levels. Why can it make such a difference? The reason is because the sugar that we get in our bodies from processed foods such as white bread, white rice, white pasta, chocolates and fizzy drinks (to name a few junk foods) is immediately available, and immediately affects us. The body doesn’t have to work hard to digest the food and extract the nutrients. As a result, blood sugar rises rapidly and we can feel full of energy as a consequence. But this reaction is very bad for our body, which handles this sudden influx of sugar by releasing the hormone insulin. This informs our cells to mop up excess sugar very quickly. As a result of this activity by our insulin secretions, our blood sugar then drops, but it goes too low. Because of this drop, the hormone adrenaline is released. This is to initiate the unleashing of stored glucose, and then the experience of adrenaline is felt by the body. And as Dale Pinnock eloquently states “…adrenaline is to anxiety what petrol is to a bonfire”. You will then experience a change in your breathing rate; your heartbeat gets faster and faster; and your mind starts to race. These symptoms can be very unpleasant if you are already prone to experiencing anxiety.

        Additionally,  high calorie meals rich in trans-fats appear to stimulate immune activation.  Indeed, the inflammatory effects of a diet high in calories and trans-fatty acids have been proposed as one mechanism through which the Western diet may have detrimental effects on brain health, including cognitive decline, hippocampal dysfunction, and damage to the blood-brain barrier. Since various mental health conditions, including mood disorders, have been linked to heightened inflammation, this mechanism also presents a pathway through which poor diet could increase the risk of depression. This hypothesis is supported by observational studies which have shown that people with depression score significantly higher on measures of “dietary inflammation,” characterised by a greater consumption of foods that are associated with inflammation (eg, trans fats and refined carbohydrates) and lower intakes of nutritional foods, which are thought to have anti-inflammatory properties (eg, omega-3 fats).

        Blood sugar levels and trans-fats affect also anger levels. The are many studies that demonstrate the close relation between anger levels and diet. In a research  conducted by Professor Stephen Schoenthaler in 1983  for California State University, three thousand inmates of a prison were placed on a strict diet. The diet contained a marked reduction in sugary and refined foods. The results of this dietary restriction were as follows: There was a 25% reduction in assaults at the prison, a 21% reduction in anti-social behaviour, a 75% reduction in the use of restraints and a 100% reduction in suicides! A later study affirmed the validity of the results of Schoenthaler’s research. In 1983, in a double-blind study of 1,382 detained juvenile offenders on a sugar-restricted diet, the effects of this restricted diet were as follows: the anti-social behaviour dropped by 44% with the most outstanding reductions happening to the most serious offenders (Schoenthaler 1983). There is also research which suggests a link between trans-fats (including hydrogenated oils in processed foods), on the one hand, and aggression, irritability and impatience, on the other.  And, there have been several follow-up studies which have replicated and extended Schoenthaler’s results, demonstrating a strong link between healthy diet and more pro-social behaviour, indicative of better mood management and emotional control.  Of particular note is the finding that keeping the poor quality diet of prisoners, but adding vitamin and mineral supplements, plus fish oil supplements, will normally reduce anti-social behaviour, as levels of anger decline. And in the UK, between 1995 and 1997, at Aylesbury Young Offenders Institution, a placebo-controlled, randomised trial, was conducted by Dr Bernard Gesch (2002), in which young offenders were given food supplements (including vitamins, minerals and essential fatty acids), and it was found that they committed 37% fewer violent offences, while the inmates who received the placebo showed no such reduction; thus demonstrating that improved nutrition reduces angry outbursts (which were being fuelled by vitamin and mineral and fatty acid deficiencies).

    So, which foods are recommended for improved mood and healthy mental state?

    Generally, eating a balance of foods, mostly plants, gives us the nutrients we need for physical and mental health. There is no superfood for mental health. Our pattern of eating is what matters the most. A balanced and varied diet of whole and unprocessed foods provides the mix of nutrients we need to be at our best. All nutrients are important for physical and mental health. Here’s how foods from the five core food groups support our mental wellbeing:

    • Fruit and vegetables provide us with fibre that feeds our good gut bacteria. Fruit and vegetables are important sources of the vitamins, minerals, and antioxidants that underpin our body’s core functions. Fermented foods, such as Kimchi , Kefir,  Kombucha or Sauerkraut, are also beneficial for our mental health, as they provide us with living good bacteria (also known as probiotics).


    • Whole grains, cereals and legumes  are excellent sources of minerals, healthy fats, protein and fibre. They give us B vitamins, folate, and other vitamins which support brain health and functioning.


    • Lean meats, including fish, and eggs are the best dietary sources of protein. Our body turns protein into many products, including brain chemicals that shape our mood. Moderation is key though – too much meat, particularly processed and fatty meats, can negatively affect our physical and mental health.


    • Dairy foods like yoghurt provide us with living probiotics, which boost our gut health and in turn supports mental health.


    • Healthy fats, especially omega-3, are essential for keeping our brain and nerves in tip-top shape. Great sources include olive oil, nuts, seeds, and oily fish like sardines, salmon, and mackerel.


    • Water is vital for mental health. Our bodies are 65% water, and our organs (including our brain!) need water to function well. Drinking adequate water keeps our brains more alert. For most adults this is around 2 litres, or 8 cups, of water each day.



    Taylor-Byrne, R. and Byrne, J.; How to control Your anger, anxiety and depression: Using nutrition and physical activity . The Institute for E-CENT Publications: Hebden Bridge. Kindle Edition.

    Furness J. and Bornstein J., “The Enteric Nervous System and Its Extrinsic Connections,” in Textbook of Gastroenterology (Philadelphia: Lippincott, 1995).

    Gershon, M. , The Second Brain (New York: Perennial, 1999).

    Adrian T. E. and Bloom S. R., “The Effect of Food on Gut Hormones,” Advances in Food and Nutrition Research 37 (1993).

    Sandra Blakeslee, “Complex and Hidden Brain in the Gut Makes Cramps, Butterflies, and Valium,” New York Times, January 23, 1996.

    David, M. The Slow Down Diet: Eating for Pleasure, Energy, and Weight Loss (p. 191). Inner Traditions/Bear & Company. Kindle Edition.

    Gangwisch J.E., Hale L., Garcia L. et al. High glycemic index diet as a risk factor for depression: analyses from the Women’s Health Initiative. Am J Clin Nutr2015;102:454-63. doi:10.3945/ajcn.114.103846 pmid:26109579

    Sarris, J., Logan, A. C., Akbaraly, T. N., Paul Amminger, G., Balanzá-Martínez, V., Freeman, M. P., et al. 2015. International Society for Nutritional Psychiatry Research consensus position statement: nutritional medicine in modern psychiatry. World Psychiatry. 14:370–1. doi: 10.1002/wps.20223

    Jacka, F. N., O'Neil, A., Opie, R., Itsiopoulos, C., Cotton, S., Mohebbi, M., et al. 2017. A randomised controlled trial of dietary improvement for adults with major depression (the ‘SMILES’ trial). BMC Med.. 15:23. doi: 10.1186/s12916-017-0791-y

    Lassale C, Batty GD, Baghdadli A, Jacka F, Sánchez-Villegas A, Kivimäki M, Akbaraly T. Healthy dietary indices and risk of depressive outcomes: a systematic review and meta-analysis of observational studies. Mol Psychiatry. 2019 Jul;24(7):965-986. doi: 10.1038/s41380-018-0237-8. Epub 2018 Sep 26. Erratum in: Mol Psychiatry. 2018 Nov 21;: PMID: 30254236; PMCID: PMC6755986.

    Edwards, M. (2014) 'The candida depression connection - How yeast leads to depression, anxiety, ADHD, and other mental disorders'. Available online at: https://www.naturalnews.com/047184_ candida_ depression_gut_microbes.html#

    Enders, G. (2015) Gut: The inside story of our body’s most under-rated organ.  London: Scribe Publications. Pages 2-3.

    Salari-Moghaddam A, Saneei P, Larijani B, Esmaillzadeh A. Glycemic index, glycemic load, and depression: a systematic review and meta-analysis. Eur J Clin Nutr2019;73:356-65. doi:10.1038/s41430-018-0258-z pmid:30054563

    O’Keefe JH, Gheewala NM, O’Keefe JO. Dietary strategies for improving post-prandial glucose, lipids, inflammation, and cardiovascular health. J Am Coll Cardiol2008;51:249-55. doi:10.1016/j.jacc.2007.10.016 pmid:18206731

    Ross, J. (2003) The Mood Cure: Take charge of your emotions in 24 hours using food and supplements. London: Thorsons.

    Virkkunen, M. (1986) ‘Reactive hypoglycaemic tendency among habitually violent offenders’. Nutrition Reviews, Vol. 44 (Suppl). Pages 94-103.

    Schoenthaler, S.J. (1983) ‘The Northern California diet-behaviour program: An empirical evaluation of 3,000 incarcerated juveniles in Stanislaus County Juvenile Hall’. International Journal of Biosocial Research, Vol 5(2), Pages 99-106.

    Schoenthaler, S.J. (1983) ‘The Los Angeles probation department diet behaviour program: An empirical analysis of six institutional settings’. International Journal of Biosocial Research, Vol 5(2), Pages 107-117.

    Bravo, J.A., P. Forsythe, M.V. Chew, E. Escaravage, H.M. et al (2011) ‘Ingestion of Lactobacillus strain regulates emotional behaviour and central GABA receptor expression in a mouse via the vagus nerve’. PNAS 2011 108 (38) 16050-16055; doi:10.1073/pnas.1102999108;

    Schmidt, K., Cowen, P.J., Harmer, C.J., et al. (2015) ‘Prebiotic intake reduces the waking cortisol response and alters emotional bias in healthy volunteers’. Psychopharmacology (2015) 232: Pages 1793-1801.

    Noble EE, Hsu TM, Kanoski SE. Gut to brain dysbiosis: mechanisms linking western diet consumption, the microbiome, and cognitive impairment. Front Behav Neurosci2017;11:9. doi:10.3389/fnbeh.2017.00009 pmid:28194099

    David, M. ; The Slow Down Diet: Eating for Pleasure, Energy, and Weight Loss (pp. 71-72). Inner Traditions/Bear & Company. Kindle Edition.

  • The Psychology of Eating, part 1

    Part 1 . How the state of the eater affects his/her metabolic capacity.

        Most of us have been taught to believe that good nutrition is simply a function of eating the right food and taking the right supplements. Although this is true, there’s more to the equation. What we eat is only half the story of good nutrition. The other half of the story is who we are as eaters. That is, what we think, feel, believe, our levels of stress, relaxation, pleasure, awareness, and the inner stories that we live out all have a real, powerful, and scientific effect on nutritional metabolism.
        Recent advances in the mind-body sciences have been proving what ancient wisdom traditions have been saying for eons—that the mind and body exist on an exquisite continuum, they are connected intrinsically and profoundly impact one another. So the good news is simply this: you can powerfully change your health and your nutritional status by changing you the eater.


        The Automatic Nervous System is the ‘powerhouse’ that prepares our body for unconscious action and consists of two parts: the Sympathetic Nervous System (SNS) , also referred as “fight or flight”  and the Parasympathetic Nervous System (PNS) also referred as “rest and digest”.  It’s an important concept to note that this system is “autonomous” , because it tells us that acts on its own. In other words, you don’t need to tell your autonomic nervous system to do its job — nor can you.
        Our SNS , which triggers our fight or flight response, prepares the body for a perceived threat or danger, increasing blood flow, heart rate  and producing hormones like cortisol or adrenaline , making us more alert and receptive to react. The PNS, which controls our rest and digest response, has the opposite effect of SNS, so instead of increasing the heart rate, it decreases it with the hormone acetylcholine, returning the body to a state of calm and peace. So the PNS basically undoes what the SNS has caused.


        It’s easy to see that the fight or flight response is essential in some situations. Undoubtedly, your body's ability to manipulate the smooth muscles, cardiac muscles, and glands in order to produce quicker, faster, stronger reactions when you need them can save your life. However, it’s also easy to see that if you are unable to perceive truly dangerous situations accurately, you may ignite your fight or flight response more often than is necessary. The point here is that you do not want your fight or flight system to be activated when it doesn't need to be. Original research by David S. Goldstein in the journal Cellular and Molecular Neurobiology states: “If the stress response is excessive or prolonged then any of a variety of clinical disorders can arise.” In other word, activating the fight or flight response too often can cause serious health ramifications.

        You should optimally be in a parasympathetic state 80 percent of the time, but many people struggle to be in this state at any point during their day, for any length of time. From the minute the alarm goes off in the morning, moving around all day long, eating on the run, rushing to work, to finally collapsing into bed, the constant demands keep us on edge. For most of us “fight or flight” just doesn’t stop all day. This feature of the nervous system evolved over millions of years as a brilliant safety mechanism to support us during life-threatening events. So, in the moment of stress, the sympathetic response is activated, and something very interesting happens—the digestive system shuts down. It makes perfect sense that when you’re facing an angry gorilla, you don’t need to waste energy digesting your breakfast. All the body’s metabolic energy is directed towards survival. So, you could be eating the healthiest food in the universe, but  if you aren’t eating under the optimum state of digestion and assimilation—which happens to be relaxation—you literally and metabolically are not receiving the full nutritional value of your meal.

        There are many more ways, that having an imbalanced nervous system can affect your health. When in in a chronic sympathetic state, the body typically produces lots of cortisol. This is a very direct way that your body will purposely create more glucose in the blood, so you can keep being active in your daily life. But chronically high cortisol and blood glucose is not ideal, it leads to high oxidation and cell damage, and eventually insulin resistance and type 2 diabetes. Another example of how lifestyle – even the parts that are completely separate from diet – determines your health. Your body is telling itself that immediate survival is more important than regenerating cells, reducing inflammation, detoxifying, or reproducing or any other bodily function that isn’t about surviving a crisis.

    So, what has the science to say about the psychology of the eater?


    • A peaceful state is the best digestive aid.

    It’s fascinating how stress, fear, anxiety, anger, judgment and even negative self-talk can literally create a physiologic stress response in the body. This means that we generate more cortisol and insulin, two hormones that have the unwanted effect of signalling the body to store weight, store fat, and stop building muscle. Strange as it may sound, we quite literally change our calorie burning capacity when we’re stressed. What’s more incredible though, is that as we learn to smile more, ease into life and breathe more deeply, the body enters a physiologic relaxation response (rest and digest) . In this state, we actually create our optimal day-in, day-out calorie-burning metabolism. So, you could be following the best weight loss diet in the world, but if you’re an anxious mess, the power of your mind is limiting the weight loss of your body. Far too many people adopt stressful weight loss strategies—impossible to follow diets, overly intense exercise programs, tasteless food, extremely low calorie meal plans—all of which can create the kind of stress chemistry that ensures our weight will stay put. It’s time to relax into weight loss.


    • Overeating—Could be due to lack of awareness.

    Most people think they overeat because they have a willpower problem. Well, here’s the good news—you may not have a willpower problem. The problem for a majority of overeaters is that they don’t actually “eat” when they eat. Studies show that when we aren’t always fully present to the meal, aware of its taste, eating it slowly, or simply feeling nourished by the food, the brain, which requires taste and satisfaction, misses out on a key phase of the nutritional experience. The brain literally thinks it didn’t eat, or didn’t eat enough. And it simply screams back at us—“Hungry!” So, you can dramatically decrease your overeating by increasing your awareness and presence at every meal.


    • Slower eating means faster metabolism

    One of the most basic nutritional questions to ask someone is: “Are you a fast eater, moderate eater or slow eater?” If the answer is “fast”, then it’s time for an overhaul. That’s because the act of eating fast is considered a stressor by the body. Humans are simply not biologically wired for high-speed eating. So when we do eat fast, the body once again enters the physiologic stress response, which results in decreased digestion, decreased nutrient assimilation, increased nutrient excretion, lowered calorie burning rate and a bigger appetite. The bottom line is that you can literally empower your nutritional metabolism simply by slowing down. What’s fascinating is that for many fast eaters, slowing down is quite a challenge. But try this—don’t just eat slowly—eat mindfully , feel nour- ished by your food and take in all the sensations of your meal. And by doing that , you can find pleasure from eating foods that you never thought you liked !


    • Get rid of toxic nutritional beliefs

    Finally, many of us have absorbed toxic nutritional beliefs that are as harmful and debilitating as any of the toxins in our food. Here’s what I mean: It’s surprisingly common for people to believe that “food is the enemy” or “food makes me fat” or “fat in food will become fat on my body” or “my appetite is the enemy” or “as soon as I have the perfect body, then I’ll finally be happy.” Such beliefs may seem harmless, yet they can create a relationship with food and self that’s filled with tremendous suffering and pain. Think about it—if “food is the enemy”, then we are constantly in a fight or flight stress response whenever we eat, or even think about food. Such a powerful stressor can cause all the problems of stress-induced digestive shutdown, decreased calorie burning capacity, and an inner life that’s seldom at peace.

    So, the question is: Is your relationship with food nourishing, or punishing?



    Coming soon:

    Part 2. How to stay more in Parasympathetic Mode.



Website Created & Hosted with Website.com Website Builder